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Abstract. The class of nonlinear evolution equations (NLEE) – gauge equivalent to the N-wave equations
related to the simple Lie algebra � are derived and analyzed. They are written in terms of S(x, t) ∈ �

satisfying r = rank � nonlinear constraints. The corresponding Lax pairs and the time evolution of the
scattering data are found. The Zakharov–Shabat dressing method is appropriately modified to construct
their soliton solutions.

PACS. 02.30.Zz Inverse problems – 05.45.Yv Solitons – 02.30.Ik Integrable systems – 02.20.Sv Lie algebras
and Lie groups

1 Introduction and preliminaries

It is well known [1,2] that the Lax representation (1)

[L(λ),M(λ)] = 0 (1)

is invariant under the group of gauge transformations.
One of the first nontrivial examples of gauge equivalent

nonlinear evolution equations (NLEE) is provided by the
nonlinear Schrödinger equation (NLSE) [1–3]:

iut + uxx + 2|u2|u(x, t) = 0, (2)

and the Heisenberg ferromagnet equation (HFE):

iS(0)
t =

1
2

[
S(0)(x, t), S(0)

xx

]
,

S(0)(x, t) = g(0)−1σ3g
(0)(x, t); (3)

obviously (S(0))2 = 11. The equivalence between (2)
and (3) is based on the fact that g(0)(x, t) is determined
by u(x, t) through (see [2]):

i
dg(0)

dx
+ q(0)(x, t)g(0)(x, t) = 0, (4)

q(0)(x, t) =
(

0 u
−u∗ 0

)
, lim

x→∞ g(0)(x, t) = 11. (5)

Both equations are infinite dimensional completely in-
tegrable Hamiltonian systems. The phase space MNLSE

is the linear space of all off-diagonal matrices q(0)(x, t)
a e-mail: gerjikov@inrne.bas.bg

tending fast enough to zero for x → ±∞. A hierarchy of
pair-wise compatible symplectic structures on MNLSE is
provided by the 2-forms:

Ω
(k)
NLSE =

i
4

∫ ∞

−∞
dx tr

(
δq(0) ∧ Λk

[
σ3, δq

(0)(x, t)
])
. (6)

The phase space MHFE of the HFE is the manifold of all
S(0)(x, t) determined by the second relation in (3). The
family of compatible 2-forms is:

Ω̃
(k)
HFE =

i
4

∫ ∞

−∞
dx tr

(
δS(0) ∧ Λ̃k

[
S(0), δS(0)(x, t)

])
. (7)

By Λ and Λ̃ we have denoted the recursion operator of the
NLS type equations and its gauge equivalent [4]. The spec-
tral theory of these two operators underlie all the funda-
mental properties of these two classes of gauge equivalent
NLEE, for details see [4]. Note that the gauge transfor-
mation relates nontrivially the symplectic structures, i.e.
Ω

(k)
NLSE � Ω̃

(k+2)
HFE [4,5].

The NLSE is solvable by the inverse scattering
method applied to the Zakharov-Shabat system. It can
be generalized to any simple Lie algebra g of rank r > 1
by [6–11]:

L(λ)ψ ≡
(

i
d
dx

+ q(x, t) − λJ

)
ψ(x, t, λ) = 0, (8)

where q(x, t) and J are elements of g. A natural choice of
the gauge in (8) consists in choosing J to be a constant
regular element of the Cartan subalgebra h of g. Next by a
gauge transformation L(λ) → g−1

0 L(λ)g0 where g0(x, t) ∈
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G commutes with J we can eliminate the diagonal ele-
ments of q(x, t) and cast it in the form q(x, t) = [J,Q(x, t)].
Since J is a regular element of h then q(x, t) ∈ g\h is deter-
mined by |∆| independent coefficient functions as follows:

Q(x, t) =
∑

α∈∆+

(qα(x, t)Eα + pα(x, t)E−α) , (9)

where E±α are the root vectors of g and ∆+ is the set
of positive roots of g, ∆ = ∆+ ∪ (−∆+). The root α is
positive if α(J) > 0; by Eα, α ∈ ∆ and Hi, i = 1, . . . , r
we denote the Cartan–Weyl basis of g with the standard
commutation relations, see [12]. This choice of the gauge
of L(λ) allows one to study the N -wave type equations:

i[J,Qt] − i[I,Qx] + [[I,Q], [J,Q]] = 0. (10)

Indeed equation (10) allows Lax representation with
the pair of Lax operators L(λ) (8) and M(λ):

M(λ)ψ ≡
(

i
d
dt

+ [I,Q(x, t)] − λI

)
ψ(x, t, λ) = 0, (11)

where I is also a constant regular element of I ∈ h.
There is a second canonical way to fix up the gauge of

the Lax operator known as the pole gauge [13]:

L̃ψ̃(x, t, λ) ≡
(

i
d
dx

− λS(x, t)
)
ψ̃(x, t, λ) = 0, (12)

where ψ̃(x, t, λ) = g−1(x, t)ψ(x, t, λ),

S(x, t) = AdgJ ≡ g−1(x, t)Jg(x, t). (13)

The gauge transformation which takes L(λ) to L̃(λ) =
g−1L(λ)g(x, t) is performed with the Jost solution of (8)
taken at λ = 0, i.e. g(x, t) ∈ G and

i
dg
dx

+ q(x, t)g(x, t) = 0, lim
x→∞ g(x, t) = 11. (14)

Applying the gauge transformation to M(λ) we get:

M̃ψ̃(x, t, λ) ≡
(

i
d
dt

− λf(S)
)
ψ̃(x, t, λ) = 0, (15)

where f(S) is a function (in fact, a polynomial) to be de-
termined below. Indeed only this choice of M̃(λ) ensures
the vanishing of the λ2-term in the zero-curvature condi-
tion [L̃, M̃ ] = 0; the terms proportional to λ lead to the
following form of the gauge equivalent NLEE:

St − d
dx
f(S) = 0. (16)

While the N -wave type equations are well known, their
gauge equivalent ones to the best of our knowledge have
not been derived yet. One of the difficulties in doing this
is the necessity to express all factors in terms of S only.

The gauge equivalent operators L(λ) and L̃(λ) have
equivalent spectral properties and spectral data. This fact

allows one to prove that the classes of NLEE related to
L(λ) and L̃(λ) are also equivalent.

In Section 2 we construct the NLEE gauge equiva-
lent to the N -wave equations (10) extending the results
in [4]. Namely we calculate the functions f(S) for the
cases when g belongs to the classical series of simple Lie
algebras. In Section 3 we briefly describe the interrela-
tions between the scattering data of L(λ) and L̃(λ) and
outline some of their reductions. We also reformulate the
Riemann–Hilbert problem (RHP) for the gauge equivalent
systems and describe the time evolution of the scattering
data. In Section 4 we extend the Zakharov–Shabat dress-
ing method [7,9,13] for the gauge equivalent systems [4]
and provide the general form of the 1-soliton solution of
these system. These results are demonstrated on an exam-
ple on the orthogonal Lie algebra B2 � so(5) in Section 5.
This and other particular cases of equation (16) describe
isoparametric hypersurfaces [14].

2 General form of the gauge equivalent
systems

It is natural that f(S) = g−1(x, t)Ig(x, t), i.e., it is
uniquely determined by I. Both J and I belong to
the Cartan subalgebra h so they have common set of
eigenspaces.

The derivation of the corresponding functions f(S) is
different for Ar and for Br, Cr, Dr series. Let first g �
Ar = sl(n) with n = r + 1. Then

J = diag (J1, . . . , Jn), I = diag (I1, . . . , In),

and the only constraint on the eigenvalues Jk and Ik
is tr J = tr I = 0. The projectors on the common
eigensubspaces of J and I are given by:

πk(J) =
∏
s�=k

J − Js

Jk − Js
= diag (0, . . . , 0, 1

k
, 0, . . . , 0). (17)

Next we note that

I =
n∑

k=1

Ikπk(J). (18)

In order to derive f(S) for g � sl(n) we need to apply the
gauge transformation to (18) with the result:

f(S) =
n∑

k=1

Ikπk(S), (19)

i.e., f(S) is a polynomial of order n − 1. Obviously S is
restricted by:

n∏
k=1

(S − Jk) = 0, trSk = tr Jk, (20)

for k = 2, . . . , n.
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Let us now assume that g is an orthogonal or symplec-
tic algebra. In the typical representation we can introduce
the Cartan generators Hek

which are dual to the orthogo-
nal basic vectors ek in the root space. Each Hek

has only
two non-vanishing eigenvalues equal to 1 and −1 respec-
tively. Then we put:

J =
r∑

k=1

JkHek
, I =

r∑
k=1

IkHek
.

Obviously the odd powers of Hek
also belong to g while

the even powers do not. The projectors fk(J) onto Hek

then can be written down as:

fk(J) =
J

Jk

∏
s�=k

J2 − J2
s

J2
k − J2

s

= Hek
∈ h. (21)

Therefore

I =
r∑

k=1

Ikfk(J), (22)

and applying the gauge transformation we get:

f(S) ≡ g−1(x, t)Ig(x, t) =
r∑

k=1

Ikfk(S). (23)

Then the equation gauge equivalent to (8) is given
by (16) with f(S) determined by (23).

In addition S(x, t) satisfies a set of nonlinear con-
straints; one of them is the characteristic equation:

Sκ0

r∏
k=1

(S2 − J2
k ) = 0, (24)

where κ0 = 0 if g � Cr or Dr and κ0 = 1, if g � Br.
To construct the others we use the typical representation
of g. It this settings we see that all even powers of Hek

have trace equal to 2. Thus we have:

tr (J2k) ≡ 2
r∑

p=1

J2k
p = tr (S)2k, (25)

for k = 1, . . . , r. The conditions (25) are precisely r inde-
pendent algebraic constraints on S. Solving for them we
conclude that the number of independent coefficients in S
is equal to the number of roots |∆| of g.

Both classes of NLEE possess hierarchies of
Hamiltonian structures. The phase space MN−w of
the N -wave equations is the linear space of off-diagonal
matrices q(x, t); the hierarchy of symplectic structures is
given by:

Ω
(k)
N−w = i

∫ ∞

−∞
dx tr

(
δq ∧ Λk[J, δq(x, t)]

)
. (26)

The phase space MS of their gauge equivalent equa-
tions (16) is the nonlinear manifold of all S(x, t) satisfying
equations (24, 25). The family of compatible 2-forms is:

Ω̃
(k)
S = i

∫ ∞

−∞
dx tr

(
δS ∧ Λ̃k[S, δS(x, t)]

)
. (27)

Here Λ and Λ̃ are the recursion operator of the N -wave
type equations (see [4]) and its gauge equivalent: Λ̃ =
g−1Λg(x, t).

3 Fundamental analytic solutions (FAS) and
scattering data for gauge equivalent systems

The direct scattering problem for the Lax operator (8) is
based on the Jost solutions:

lim
x→∞ψ(x, λ)eiλJx = 11, lim

x→−∞φ(x, λ)eiλJx = 11,(28)

and the scattering matrix:

T (λ) = (ψ(x, λ))−1φ(x, λ). (29)

The FAS ξ±(x, λ) of L(λ) are analytic functions of λ for
λ ≷ 0 and are related to the Jost solutions by [11]

ξ±(x, λ) = φ(x, λ)S±(λ) = ψ(x, λ)T∓(λ)D±(λ), (30)

where T±(λ), S±(λ) and D±(λ) are the factors of the
Gauss decomposition of the scattering matrix:

T (λ) = T−(λ)D+(λ)Ŝ+(λ) = T+(λ)D−(λ)Ŝ−(λ). (31)

Here Ŝ ≡ S−1, the superscripts + (resp. −) in T±(λ) and
S±(λ) mean upper- (resp. lower-) triangularity. The diag-
onal factorsD±(λ) are analytic functions of λ for Imλ > 0
and Imλ < 0 respectively.

On the real axis ξ+(x, λ) and ξ−(x, λ) are related by

ξ+(x, λ) = ξ−(x, λ)G0(λ), G0(λ) = Ŝ−(λ)S+(λ), (32)

and the function G0(λ) can be considered as a minimal
set of scattering data in the case of absence of discrete
eigenvalues of (8) [11,15].

If the potential q(x, t) of L(λ) (8) satisfies equa-
tion (10) then S±(λ) and T±(λ) satisfy the linear equa-
tion:

i
dS±

dt
− λ[I, S±] = 0 i

dT±

dt
− λ[I, T±] = 0, (33)

while the functions D±(λ) are time-independent. In other
words D±(λ) can be considered as the generating func-
tions of the integrals of motion of (10).

In order to determine the scattering data for the gauge
equivalent equations we need the FAS for these systems:

ξ̃±(x, λ) = g−1(x, t)ξ±(x, λ)g−, (34)

where g− = limx→−∞ g(x, t) = T̂ (0). In order to ensure
that the functions ξ̃±(x, λ) are analytic with respect to λ
the scattering matrix T (0) at λ = 0 must belong to the
corresponding Cartan subgroup H. Then equation (34)
provide the FAS of L̃. We calculate their asymptotics for
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x→ ±∞ and establish the relations between the scatter-
ing matrices of the two systems:

lim
x→−∞ ξ̃+(x, λ) = T (0)S+(λ)T̂ (0) (35)

lim
x→∞ ξ̃+(x, λ) = e−iλJxT−(λ)D+(λ)T̂ (0) (36)

with the result:

T̃ (λ) = T (λ)T̂ (0). (37)

Obviously T̃ (0) = 11. The factors in the corresponding
Gauss decompositions are related by:

S̃±(λ) = T (0)S±(λ)T̂ (0), T̃±(λ) = T±(λ)

D̃±(λ) = D±(λ)T̂ (0). (38)

On the real axis ξ̃+(x, λ) and ξ̃−(x, λ) are related by:

ξ̃+(x, λ) = ξ̃−(x, λ)G̃0(λ), G̃0(λ) = ˆ̃S
−

(λ)S̃+(λ)
(39)

with the normalization condition ξ̃(x, 0) = 11; again G̃0(λ)
can be considered as a minimal set of scattering data.

The numerous Z2-reductions that have been recently
classified for the N -wave equations [16,17] using the re-
duction group introduced by Mikhailov [18]. They can eas-
ily be reformulated for the gauge equivalent systems. Here
we write down only two of them:

1) S†(x, t) = KS(x, t)K−1, K ∈ H, K2 = 11,

2) S(x, t) = S(x, t)T . (40)

Obviously each of the constraints 1) and 2) are compatible
with equation (16) and diminishes the number of indepen-
dent coefficients by a factor of 2.

4 Dressing factors and 1-soliton solutions

The main idea of the dressing method is starting from a
FAS ξ̃±(0)(x, λ) of L̃ with potential S(0) to construct a new

singular solution ξ̃±(1)(x, λ) of the RHP (39) with singu-
larities located at prescribed positions λ±1 . Then the new
solutions ξ̃±(1)(x, λ) will correspond to a potential S(1) of

L̃ with two discrete eigenvalues λ±1 . It is related to the
regular one by the dressing factors ũ(x, λ):

ξ̃±(1)(x, λ) = ũ(x, λ)ξ̃±(0)(x, λ)ũ
−1
− (λ),

ũ−(λ) = lim
x→−∞ ũ(x, λ), (41)

and the dressing factors for the gauge equivalent equations
ũ(x, λ) are related to u(x, λ) by

ũ(x, λ) = g−1
(0)(x, t)u

−1(x, λ = 0)u(x, λ)g(0). (42)

If g � Ar then the gauge equivalent dressing factors are

ũ(x, λ) = 11 +
(
c1(λ)
c1(0)

− 1
)
P1, c1(λ) =

λ− λ+
1

λ− λ−1

P1(x) =
|n(x)〉〈m(x)
〈m(x)|n(x)〉 , (43)

|n(x)〉 = ξ+0 (λ+
1 )|n0〉, 〈m(x)| = 〈m0|ξ̂−0 (λ−1 ),

where |n0〉 and 〈m0| are constant vectors and these dress-
ing factors satisfy the equation:

i
dũ
dx

− λS(1)ũ+ λũS(0) = 0. (44)

If g � Br,Dr the dressing factors take the form [16]:

u(x, λ) = 11 + (c1(λ) − 1)P1 + (c−1
1 (λ) − 1)P−1

(45)

ũ(x, λ) = 11 +
(
c1(λ)
c1(0)

− 1
)
P̃1 +

(
c1(0)
c1(λ)

− 1
)
P̃−1,

(46)

where P−1(x) = SPT
1 (x)S−1, P1(x) is the rank 1 pro-

jector (43), P̃±1 = g−1
(0)P±1g(0)(x, t). If g � Br then

N = 2r + 1.

S =
r∑

k=1

(−1)k+1(Ekk̄ + Ek̄k) + (−1)rEr+1,r+1; (47)

k̄ = N − k + 1, (Ekm)il = δikδml; if g � Dr then N = 2r

S =
r∑

k=1

(−1)k+1(Ekk̄ + Ek̄k). (48)

If the dressing factors of the gauge equivalent equations
satisfy (44) then the projectors P̃±1 satisfy the equations:

i
dP̃1

dx
+ λ−1 P̃1S(0) − λ−1 S(1)P̃1 = 0,

i
dP̃−1

dx
+ λ+

1 P̃−1S(0) − λ+
1 S(1)P̃−1 = 0, (49)

and the “dressed” potential can be obtained by:

S(1) = S(0) + i
λ+

1 − λ−1
λ+

1 λ
−
1

d
dx

(P̃1(x) − P̃−1(x)). (50)

The dressing factors can be written in the form:

ũ(x, λ) = exp
[
ln

(
c1(λ)
c1(0)

)
p̃(x)

]
, (51)

where p̃(x) = P̃1 − P̃−1 ∈ g and consequently ũ(x, λ) be-
longs to the corresponding orthogonal group.
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Making use of the explicit form of the projectors
P±1(x) valid for the typical representation of Br we
have [16]

p̃(x) =
2

〈m|n〉
r∑

k=1

h̃k(x)Hek

+
2

〈m|n〉
∑

α∈∆+

(P̃α(x)Eα + P̃−α(x)E−α), (52)

where we assumed S(0) = J , g(0) = 11. Thus

h̃k(x, t) = n0,km0,ke2ν1yk − n0,k̄m0,k̄e−2ν1yk ,

〈m|n〉 =
r∑

k=1

(
n0,km0,ke2ν1yk + n0,k̄m0,k̄e−2ν1yk

)

+n0,r+1m0,r+1, (53)

P̃α =



P̃ks, for α = ek − es

P̃ks̄, for α = ek + es

P̃k,r+1, for α = ek.

Here 1 ≤ k, s ≤ r, µ1 = Reλ+
1 , ν1 = Imλ+

1 and

P̃ks = eiµ1(ys−yk)(n0,km0,seν1(ys+yk)

−(−1)k+sn0,s̄m0,k̄e−ν1(ys+yk)),

yk = Jkx+ Ikt, yk̄ = −yk, yr+1 = 0. (54)

The corresponding result for the Dr series is obtained for-
mally if in the above expressions (53, 54) and (54) we put
n0,r+1 = m0.r+1 = 0. Thus P̃k,r+1 = P̃r+1,k = 0 and the
last term in the right hand side of 〈m|n〉 (53) is missing.

The reductions (40) applied to the 1-soliton solution
constraint the vectors |n0〉, 〈m0| and the eigenvalues λ±1 :

1) |n0〉 = K|m∗
0〉, λ−1 = (λ+

1 )∗,

2) |n0〉 = |m0〉, λ−1 = −λ+
1 . (55)

The N -soliton solutions can be obtained by applying suc-
cessively N times the dressing procedure.

5 Example: g � B2 algebra

This algebra has four positive roots: e1 ± e2, e1 and e2.
The corresponding 4-wave system has the form:

i(J1 − J2)q10,t − i(I1 − I2)q10,x + 2κq11q∗01 = 0,
iJ2q01,t − iI2q01,x + κ(q∗11q12 + q11q

∗
10) = 0,

iJ1q11,t − iI1q11,x + κ(q12q∗01 − q10q01) = 0,
i(J1 + J2)q12,t − i(I1 + I2)q12,x − 2κq11q01 = 0 (56)

where κ = J1I2−J2I1 and the subscripts 10, 01, 11 and 12
refer to the roots e1 − e2, e1, e2 and e1 + e2 respectively.

This system has applications in nonlinear optics [9,16] and
in differential geometry [14]. Its gauge equivalent is:

St − f1Sx − f3(S3)x = 0,

f1 =
I2J

3
1 − I1J

3
2

J1J2(J2
1 − J2

2 )
f3 =

I1J2 − I2J1

J1J2(J2
1 − J2

2 )
, (57)

where the 5 × 5 matrix S is constrained by:

trS2 = 2(J2
1 + J2

2 ), trS4 = 2(J4
1 + J4

2 ),
S(S2 − J2

1 )(S2 − J2
2 ) = 0. (58)

We write down the 1-soliton solution for a special
choice

n0,1 = 1, n0,2 = ρ, n0,3 =
√

2(ρ2 − 1),
n0,k = n0,k̄, m0,k = n0,k. (59)

of the soliton parameters with ρ ≥ 1 and real. The
choice (59) satisfies (55) with K = 11. Inserting it into
the general formulae (52)–(54) we get P̃−α = P̃ ∗

α with:

〈m|n〉 = 2(sinh2 ν1y1 + ρ2 cosh2 ν1y2),

h̃1 = sinh 2ν1y1, h̃2 = ρ2 sinh 2ν1y2,

P̃e1±e2 = ρe−iµ1(y1±y2) cosh ν1(y1 ∓ y2),

P̃ek
=

√
2(ρ2 − 1)e−iµ1yk sinh ν1yk, k = 1, 2.

(60)

If ρ = 1 we get a 1-soliton solution associated with the
D2 � A1 ⊕A1 subalgebra; ρ = 0 gives a 1-soliton solution
for the so(3) subalgebra of B2. In both subcases the sub-
sets of roots ({±e1 ± e2} and {±e1,±e2} resp.) for which
P̃α �= 0 contain only roots with the same length.

6 Discussion

We derived the explicit form of the NLEE gauge equivalent
to the N -wave equations related to the classical simple Lie
algebras g. These equations are Hamiltonian ones. Their
phase space M̃ is a nonlinear one, since S is restricted by
the nonlinear constraints (24, 25).

The gauge covariant formulation of the spectral de-
compositions of the recursion operators Λ and its gauge
equivalent Λ̃ allows one to expect that the hierarchies
of symplectic structures will satisfy in analogy with the
NLSE-HFE case the relation Ω(k)

N−w � Ω̃
(k+2)
S .

Another open problem is the study of the
Z2-reductions of (16) along the ideas outlined in [16,17].

The authors are grateful to Professors V. Sokolov and E.
Ferapontov for useful discussions.
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